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APPENDIX A: Energy concepts and analysis in linear elasticity

In what follows, we are concerned with the equilibrium of a solid, made of an isotropic
homogeneous linearly elastic material and subjected to body forces, prescribed

displacements and/or tractions on its boundary.

Fig. Al: Schematic of a
solid in equilibrium
subjected to boundary
tractions and

0Q)  displacement.

We will use simple arguments to prove the uniqueness of an elastic solution when it exists.
We will also discuss methods of solution based on energy and define certain approximate
methods of solution. For completeness, we start with the system of equations for a solid in

static equilibrium.

Boundary value problems of static linear elasticity.

For a solid in equilibrium, we have the following system of equations (Chapter 7: Botsis and

Deville, 2018).
The Field Equations of Linear Elastostatics
The system of field equations consists of:
- the 3 equations of equilibrium
o,;+,=0 , divo+f=0 (A.1)
where f'is body force vector.

- the 6 equations defining the strain-displacement relation
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& :%(u +u) , & :%(Vu+(Vu)T) (A.2)

2y Jot

- the 6 equations defining the isotropic homogeneous stress-strain relation
0, =Aey0, +2ue,; , o =Airel+2ue (A.3a)

Here the Lamé constants A and ., are independent of x. They are related to Young’s

modulus £ and Poisson’s ratio v by,
A=Ev/(1+v)(1-2v), u=E/2(1+v). (A.3b)

A simple counting shows that we have 15 unknowns (3 displacement components u;, 6 strain

components ¢, and 6 stress componentss, ) and 15 equations. Accordingly, the problem is

well - posed.

There are two ways for combining the 15 equations of (A.1)-(A.3). The first way corresponds
to taking the three displacement components u; as the unknowns. Consequently, we introduce

(A.2) into (A.3) to obtain,

o, =Au O, + u(u, ; +u,,) (A4)
Substituting (A.4) into (A.1) gives,

A+ + o, + f;=0. (A.5a)

These are the well-known Navier equations. Using the usual differential operator notations,

we can write (A.5a) as,
(A+ w)V(divu)+ pAu+ f =0 (A.5b)

where A represents the Laplace operator. For (A.5) to make sense, the displacement must be

twice continuously differentiable.

The second way consists in considering the 6 stress components o, as the unknowns. To

proceed, we first replace the stress-strain relation (A.3) by its inverse, the strain-stress

relation,

1 v 1+v
——~ tol+—o=——trol+—o0c (A.62)
2u(3A+2u) 2u E
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& —#G 5 +LU ——LG 5 +1+—VO' A6b
To2u@A+2u) U 2w ETMY O E Y (A-6b)

Next, substituting (A.6b) into the 6 strain compatibility equations (Chapter 2: Botsis and
Deville, 2018),

€ T Euy —Epa —En =0 (A.7)
we obtain
(1+v)o, 4 =0, 0 + 0, —(1+Vv) (o, ;+0,.)=0 (A.8)

Taking the derivatives of the equilibrium equations (A.1) twice, we have the following result,
Ot YO =—Si = S (A9)

Using (A.9), relation (A.8) becomes,
(40, 44 = VO 0y T 0, ATV + £,)=0 (A.10)

Taking the trace of this equation results in,

(1=%)0,pn = —A+V) fi (A.11)

Using this relation in (A.10) and assuming v = —1, we obtain,

o

1 %
ke +Eamm’” +f+ S +:fn’néij =0 (A.12)

These are the stress compatibility equations of Beltrami-Michell. If body forces are constant,

(A.12) reduces to,

O-if,kk + m O-mm,ij =0 (A 1 3)

Note that (A.13) are trivially satisfied when o, are affine functions of x.

The Boundary Value Problems of Linear Elastostatics. The preceding field equations can

be solved only when appropriate boundary conditions are imposed. Consider a solid

occupying a domain Q of R* with aQ as its boundary (Figure A1). In a general manner, we
partition the boundary surface aQ into two parts: 0Q =S5, US, with S, NS, =< where:

5/35



§, represents the part of 6 on which the displacement , is prescribed, i.e.

u,=u, on § (A.14)
S, denotes the part of a0 on which the surface traction 7, are assigned, i.e.
t,=o,n,=t on S, (A.15)

! gJ

where 7, are the components of an outward unit normal to §, .

If neither §, nor §, is empty, the corresponding boundary condition is called a mixed
boundary condition. When §, is empty, we are concerned with a displacement boundary
condition. In the case of §, =, the boundary condition corresponds to a traction boundary

condition.

With the preceding definitions, we can formulate the classical boundary value problems of

linear elastostatics.

The mixed boundary value problem in terms of displacement components. Condition

(A.15) can be expressed in terms of u; via (A.4),
Aug o+ p(u, ; +u, Jn, =t on S, . (A.16)

Navier's equations (A.5) together (A.14) and (A.16) give the formulation of the mixed

problem in terms of displacement components,

A+, + pu,,, + f;=0 over Q (A.17a)
u; =u; on §, (A.17b)
Aug o+ p(u,  +u, )n, =4 on oQ : (A.17¢)

The displacement boundary value problem. If S, = so that Su = 6, the foregoing

formulation reduces to,

A+ + pu,,, + ;=0 over Q (A.18a)

u, =u, on oQ. (A.18b)

1
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The traction boundary value problem in terms of displacement components. If S, =&

,then S, =0€Q2. We can simplify (A.17) to,
A+ + pu;,, + f;=0 over Q, (A.19a)
Auy n+u(u, ;+u, )n; =t on S, (A.19b)

The traction boundary value problem in terms of stress components. We set S, = so

that S; =602 . The equilibrium equations (A.1), the stress compatibility equations (A.12) and

the condition (A.15) constitute the formulation of the traction problem in terms of stress

components,
o,;+/,=0 over Q (A.20a)
1 \%
O-i/',kk +m0’mm’i/ +ﬁ,/’ +f“j,i +:f;t,n5i/ =0 over Q (A20b)
t,=o.n.=t on § (A.20c¢)

It is worth noticing that the traction boundary value problem can be formulated in terms of
displacement components whereas the mixed or displacement boundary value problem

cannot generally be formulated in terms of stress components.

Energy principles

After the boundary value problem is formulated, two important questions need to be asked:
(a) does a solution exist? (b) if it exists, is it possible to have more than one? Although a
demonstration of the existence of solution is beyond the scope of this introduction, we do

examine here its uniqueness.

In solving problems of linear elasticity, we are often led to postulate certain forms of
displacement and stress fields and verify if equations (A.1) - (A.3) together with prescribed
boundary conditions are satisfied. If the answer is positive and if the uniqueness of solution
can be ensured, we can conclude that the postulated fields constitute the solution of the

problem.

In developing the theory and models in mechanics, solids and structures, the energy of the

system plays an indispensable and significant role. Besides, in several cases in engineering,
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we encounter difficulties in obtaining exact solutions of the governing equations. Thus, it is
important to consider various approximate methods. A group of methods is based on results

that these equations can be obtained from minimization of the system’s potential energy.

Below, present some important concepts on energy give a general result about the uniqueness
of solution in the isotropic case. Its proof is based on an energy equation and can easily be
extended to the anisotropic case. Afterwards, we discuss the principles of virtual work and
potential energy and their use in mechanics. These principles are very useful in the solution

of important problems in engineering. Application examples are given at the end.

Theorem of work and energy. Let u, &, o be the displacement, strain and stress fields

satisfying the equations (A.1) - (A.3) together with the boundary conditions (A.14) and

(A.15). By taking the scalar product of (A.1) with u;, and integrating over Q, we can write,
[ Loy v+ fudv=0. (A21)

Using the divergence theorem, the symmetry o, =, and Cauchy's formula, #, = o,n, we can

modify the first term as follows,
[ oy udv={ (o), =0, )av = ((ou)., )av=] (o, )dv
= [ ounds=| %(a,.ju,.,j + al.jul.’j)jdv
= [ oumds—|_ %(aﬁui,j + O'_I.iujwi))dv
<[ esunds—[ (Lo, +a,,uj,i)}v (A22)

1
= J-ag o,unds — .[Q o, 5 (u,; + uj’l.)jdv

= LQ ounds— J.Q 0 ,&,dv

= .[ag tuds — IQ 0,&;dv.
Substitution of (A.22) into (A.21) results in,
[ oyedv=] tuds+| fudv. (A.23)

Observe that the left-hand side of this expression is the work done by the stress o on the

strain &, that corresponds to the change in internal energy, while the right-hand side
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represents the sum of work done by the surface and body forces during the displacement u.

Since the stress components g, are related to the strain components ¢, by (A.3), we have,
I 0,&,dv = J. A&y +2pe 8, Jdv = 2I W(e,)dv. (A.24)

where use has been made of the strain energy density W (g;;) for an isotropic linearly elastic

material. In view of (A.24), (A.23) can be written as,
1
5( [ tauds+ [ fawav)= [ W(e,)dv. (A.25)

In the literature, (A.25) is referred to as the theorem of work and energy, or principle of
conservation of mechanical energy, for an isotropic linearly elastic solid. It states that half of work

of the external forces, applied to the solid, equals the strain energy of deformation.

Potential energy. At this point, we introduce an important energy function in mechanics, defined as
the potential energy T1, and given by the difference of the strain energy U and the work of applied

forces W,
n=u-w. (A.26a)

For a linear elastic solid, they are expressed as follows,

W = Iag tuds + IQ Sfudv (A.26b)

U= ~o,6,dv= IQ%(Agkkay. + 26, ey dv =W (e,)dv (A.26¢)
With these expressions the potential energy for a linear elastic solid is given by,

M=U-W = [ Wedv— ([ tuds+ [ fudv). (A27d)
Accounting for (A.25), we obtain,

M=U-W = [ Wedv—(] tuds+ [ fudv)==[ Weedv.  (A27e)

The potential energy is taken as zero when the body is in its undeformed state. In addition, it

is important to note that pp~ is not the work done by the external forces in deforming the

body between loading and equilibrium. The work done by the external forces is %W . Thus,
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the potential energy can be interpreted as energy ‘recovered upon unloading’, or energy for

processes other than deformation, and for a linear elastic solid it is,
H:U—Wz—U:—%W (A.271)

because U = %W as shown in (A.25).

Volumetric and distortional components of the strain energy. It is very useful to express

the elastic strain density in terms of volumetric ¥, (¢,) and distortional W, (¢,) parts. To do

so, we introduce the strain deviator &,

1
8; =g, —gekkéij . (A.28a)
Thus, it is not difficult to show that the strain energy is,
W(e )= 2K (e )+ pelet =W (e )+ W (A.28b)
(e;)= Eeﬁgkk + ueE, = 5 (&) + pege; =W, (e;,)+W,(g;)- .

Here K =(3A+24)/3 is the bulk modulus and ¢, = %gﬁ .With this expression, (A.25) can be

written as,
2
J.OQ tuds + .[Q Sudv= J.Q(9K (&) +2ueje; )dv . (A.29)
For an isotropic material, the stability hypothesis amounts to the condition that,
K>0, u>0. (A.30)

These inequalities are physically meaningful because they cannot be zero or negative.

Uniqueness of the solution. After the foregoing introduction, we can state and demonstrate the

uniqueness of the solution with the following theorem.

Theorem. Let (u(l),f:“),a(l)) and (u(z),e‘(z),d(z)) be two sets of displacement, strain and

stress fields satisfying the field equations (A.1) - (A.3) together with the boundary conditions
(A.14) - (A.15).

If S, #J, then
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2 _ M (2) — oM (2) _

u?=u", V=gV ¥ =0".

If S, =, then

(2) _

u® =y 4w, =gl G®=gO

where w is an infinitesimal rigid body rotation.

Demonstration

(2) (O]

~u?, g=g%

M

-&V, o=0%

M

Let’s define the following differences u =u -0

Thenu, € and o fulfill the field equations (A.1) - (A.3) with zero body forces, i.e.
/i =0, (a)
and u and o satisfy the following boundary conditions:
u,=0onS, , t=o,n =0 onS, (b)
Thus, (A.29) becomes,
J.Q(Kgﬁakk +2,ue§e§ )dv =0. (c)
Since k >0and 4 >0, (c)holds if and only if &, =0 and a;’ = 0 . This amounts to writing,

g, =el =0 (d)

o.=0. (e)

Moreover, (d) means that  is at most an infinitesimal rigid displacement w. If S, #J, u =0

on §,, so that we must have w =0 everywhere. However, if S, =, i.e., if surface tractions
are assigned over the entire boundary oQ, u® and u may effectively differ by an

infinitesimal rigid displacement w.

From the above demonstration, we see that the key condition ensuring the uniqueness of
solution are the inequalities (or stability condition) (A.30). If this condition holds, the

theorem tells us that:
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- for a mixed or displacement boundary value problem, the displacement, strain and

stress fields are unique.

- for a traction boundary value problem, the strain and stress fields are unique while

the displacement field is unique only to within an infinitesimal rigid displacement.

Principle of Virtual Work. The theory of linear elasticity may be developed from energy
considerations. This alternative approach has the advantage of obtaining approximate
solutions of several important problems in solids and structures. In this section, we present
the principle of virtual work and the principle of minimum potential energy in linear elasticity,
which are also the theoretical underpinnings for a variety of numerical methods, such as finite

elements, currently used to solve boundary value problems of linear elasticity.

Consider a solid in equilibrium under the action of body forces, subjected to mixed

boundary conditions,

o,,+/,=0 over Q (A31a)
u,=u, on S, (A31b)
on =t on S, (A31c)

gy

If we need to move the solid to another position, additional force is required and thus, the
original system of forces must be altered in such a motion. Let’s introduce the notion of a
virtual displacement field. The word "virtual" means not necessarily real. It is an arbitrary
displacement which does not affect the force system acting on the solid and during the

process of its application, all forces remain constant in magnitude and direction.

The magnitude of a virtual displacement is arbitrary. However, because in an infinitesimal
actual displacement, the resulting changes in the acting forces are small and considered
negligible, in comparison to the forces themselves, a virtual displacement is often considered

as an infinitesimal real displacement and thus, the changes in the forces are negligible.

In what follows, a virtual displacement is defined as a possible variation sz of the real

displacement field u of the solid. It is arbitrary and is subjected to the following restrictions:

1. The components of ou (ou,,du,,ou;) are small, continuous and single-valued

functions.
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2. During a virtual displacement, surface, body forces and internal stresses are constant

in magnitude and direction.

3. The virtual displacement does not violate the prescribed displacement condition

(A.31b). This definition implies that Sz is a virtual displacement if and only if,

ou=0 on S, (A.32a)

4. With each virtual displacement vector 5z , we associate a virtual strain tensor se ,

1
de; = 5(5141.’/. +ou; ;) (A.33a)
~ Ou,
PR\ LT LY B MR (A.33b)
T2 \ox; ox ) 2| ox ox, 7

It is important to note here that the operators d and & can be interchanged as seen in (A.33b).
Based on the preceding discussion, we can state the following important theorem.

Theorem of Virtual Work. Let s« be a virtual displacement field and let o be a stress
field verifying the equilibrium equation (A.31a) and the traction boundary condition (A.31c¢).

Then, the virtual strain energy is equal to the virtual work done by the applied forces,
oU = [ o,0e,dv = L{ Touds+ [ fioudv (A.342)

Demonstration

By means of a change in notation, the arguments we use here are identical to those leading

to formula (A.23). That is, we take the scalar product of (A.31a) with du,and integrate over

Q to obtain,

o, 0udv+ | foudv=0 (A.34b)

Using the divergence theorem and the symmetry o, = o ;, we can write,

Ji?

L) 0, oudv= Lz ((al.jéul. );—0,0u,, )dv = LQ 0,1 ouds — IQ 0,06,dv  (A.34c)

Substituting this into (A.34b) we obtain,
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IQ 0,0¢,dv = LQ o,nouds+ L} f:ou,dv (A.34d)

Dueto (A.31c) and (A.32), (A.34d) becomes (A.34a).The two integrals on the right hand side

give the virtual work of the applied forces,

oW = _aynduds+ | foudv (A.34e)

In mechanics, (A.34a) is the result of the principle of virtual work. 1t is often used to establish
the governing equation of a mechanical system. It is also important to remark that in the
demonstration of the virtual work theorem, no constitutive relations have been involved and

thus, (A.34a) holds regardless of material properties.

Principle of Minimum Potential Energy. We can define now a very important principle in

mechanics. Using (A.34a and e) we can write,
S =0(U-W)= IQ o;0e,dv — (J.Q o;n ouds + J.Q fiéuidv) =0. (A.35)

This last equation implies that at equilibrium, the potential energy of a solid takes a stationary
value. This leads to the definition of the principle of potential energy as follows: of all
displacement fields satisfying the continuity and boundary conditions, of the solid in
equilibrium, the actual displacement field makes the potential energy a stationary value. It can

also be shown that this stationary value is a minimum.

Now we proceed to show that the solution of the mixed boundary value problem (A.17), if it
exists, can be characterized by the displacement field minimizing the potential energyII.

Before proceeding, we need to define a kinematically admissible displacement.

A displacement field z is said to be kinematically admissible if it respects the assigned

displacement on §,, i.e.,

u,=u, on S§,. (A.36)

u

Theorem of Minimum Potential Energy. Assume that the mixed boundary value problem

(A.17) has the solution # . Then,
[(u) <I1(n) (A.37)

for every kinematically admissible displacement z .
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Demonstration

Since u is a solution of the mixed boundary value problem (A.17) and zis a kinematically

admissible displacement, the difference,
Su=i—u (A.38)
satisfies condition (A.32) so as to be a virtual displacement. Expressing & = u+ Ju the
potential energy is,
T(d,) = N1, +0u,) = [ W (s, + 08, )dv— [T, +0u)ds— [ fi(u, +du;)dv
= [ W(e,+e)dv=[ Touds—[ Tuds—[ foudv=[ fudv+([ Wwee,)dv=[ w,)dv)

Note here the strain energy is added and subtracted at the end. Recalling (A.27d), we write

the last expression in the following way,
I(u, + ou,)—TI(u,) = IQ (W(eii +0de,) =W (e, )) dv— LQ touds — IQ foudv (b)

Next, we expand the strain energy density in a power series and keep the terms up to the

second order,

We, oW (e,
€ 5o LOVED o e, ©)
72 0Og,0¢,

ij ij

0
W(e; +de;)=W(e;)+

Inserting into (b) and recalling that oW (¢, )/ 0¢; = o, we obtain,

82W(ag.)

€08,

I(u, +ou,)—T(u,) = IQ 0,08, dv — LQ touds — jQ Sf:ou,dv+ L)% g,;0e,,dv .

The first three terms cancel due to the principle of virtual work (A.34a) and thus,

oW (e,
H(u,; +0u,) =T(w,) = jgéw(jﬂésyasﬂdv : (d)
ikl

Since W (e, )is positive definite, the integrand in (d) is positive definite. Thus, (A.37) is
demonstrated.

The theorem of minimum potential energy asserts that the difference between the global strain
energy and the work done by the body forces and prescribed tractions takes a smaller value

for the mixed boundary problem than any kinematically admissible displacement. Note that
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the standard finite element method for linear elasticity is based on this principle.

To apply the principle of minimum potential energy, the strain energy should be expressed
in terms of strains or displacements and not containing any stress components. This is
because of the definition of the strain energy 6/ (¢;;) . In several problems with beams, it is
convenient to express the strain components in terms of a single deformation or deflection

parameter. A typical example is the deflection u,(x,) of a beam. In the strain energy density

W (&) where the strains are explicit functions of u,(x,) we have,

oW (e,) =

dW (.,
(8”)§u2.
d

U,

l:aW(Si.) de, ]
oW (e,)=| ————— |du,

Oe;  du,

Examples

Below we demonstrate examples using the energy methods discussed above. We also recall

the theorems of Castigliano with representative applications.

1a. Finite changes and virtual changes in potential energy. The principle of virtual work or
minimum potential energy is expressed as 0l1=0. From this principle, we can obtain the
governing equations of the system. Let us discuss the difference between ol1=0 and potential
energy changes due to a finite change in displacement, i.e. AIT>0.

The potential energy takes its minimum value for a given system in equilibrium. If this
minimum value is [1(#) we know from calculus that Al =11(u+Au)—I1(#) must be larger

than zero when Au (Au,, Au,,Au,) is a small but finite quantity.

The variation 01 =0 corresponds to a virtual displacement du (ou,,0u,,ou,) . From calculus,
we know that a function £'(x) is stationary at xif dF(x)/dx=0 or dF(x)=0for an

infinitesimal change in the variable.

For an actual infinitesimal displacement, the actual changes in the forces due to the
displacement are small and can be neglected in comparison to the forces themselves. Thus, a

virtual displacement can be considered as an infinitesimal actual displacement, which allows

us to write oll=0 .
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1b. Statically indeterminate truss: a truss ABCD with three members is subjected to a force
P at D (Figure A2). After loading, point D is displaced at D’. Using the principle of virtual
work and the compatibility of deformation at D, calculate the tensions in the three members

of the truss. The geometry, Young’s modulus E and cross section S are known.

D' =Acos¢

Fig. A2: A three-member truss subjected to a vertical force P at D. Also shown are the

forces on each member and the displacement of point D.

The given structure is statically indetermined of degree one. To find the forces we should
impose the compatibility of deformation at point D and determine the vertical displacement

A.

Given the symmetry of the structure, the tensions in the bars are,

SE SE SE cos’
Ty =—A, TAD:TCD:L/COS¢(ACOS¢):T¢A'

(a)

Now, to determine A we should express the strain energy in terms of displacements and
apply the virtual work principle. Thus, for each bar in tension (Del Pedro et al, 2012), the
strain energies are given by,

1, T,L 1T,L 1ES

]
U, =—T. A=—T = ity O b
R R A ®)

Similarly,
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1 ES
UAD :ETAz COSB¢. (C)

We can now express the potential energy of the system and its variation as,
M=U-W=(Uy,+2U,,)-PA ,6[(Uy,+2U,,)-PA|=0 ()

from which we have successively,

5(Ugp +2U )

P = A.39
= A (A.39)
or
o lE—SA2+2lE—SAzcos341§—PAj=0
2 L 2 L
1 ES 1 ES

= — 2 (2A0A) +2—=2(2ASA) cos’ ¢ = POA
5 L( ) > L( ) ¢

EA+2EA cos’g=P = A= LP .

L L ES(1+2cos” ¢)

With this displacement, the forces in the bars are calculated using (a),

P _ Pcos’¢

L T,=T, =P
2 14 2c0s’ ¢ P 1+2c0s’ ¢

Castiglinano’s first theorem. The expression (A.39) in the preceding example is called

Castigliano’s first theorem which states that, to calculate a single force, i.e. P, we allow a

virtual displacement 5A that is continuous everywhere and vanishes at all points of loading

except along the force .. In this virtual displacement, a virtual strain energy and external

virtual work PdA, are produced. According to the minimum potential energy principle we

have,
oU
HZU—WIU—[‘;AI. and 5H:5(U_BA1‘):O = B:E.(AAO)

The theorem can be applied to linear or nonlinear structural response because linearity is not

invoked in the demonstration.

2a. Deflection of a wire. For the (initially horizontal) elastic wire, subjected to a force at its
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middle as shown in Figure A3, calculate the relation between P and A using the first Castigliano

theorem. The length L, modulus £ and cross-section S are known.

h

Fig. A3: Elastic wire subjected to a vertical force at its
1 P middle.
The elastic energy stored in the entire wire is given by,

U=2E—SA2
2L

where A is the elongation of half the initial length 2L, which is expressed as,
A=(L+r*) L

Considering small deflections 4, we expand the expression in series and retain the two first

terms to obtain,

2 2
A=r|1s (2 v |-L = Al
o\ L 2L

Thus, the energy becomes,

_ES

U=—"2"
47

From Castigilano’s first theorem we have,

poOU _ES,;
oh L
Note that the non-linearity comes from the geometry, i.e. large displacements, and not from

the material.

Castigliano’s second theorem. There is also the Castigliano’s second theorem, which is very
important in structural mechanics applications because it allows us to calculate

displacements due to concentrated forces. This theorem states that in a linearly elastic

structure, subjected to generalized forces £, P,...P, , the partial derivative of the strain energy
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with respect to a particular force gives the generalized displacement at the load point

application along the direction of the force,

A _OURB.B.)

A4l
=Top (Adla)

Note here that the strain energy should be expressed in terms of the external loads and the
theorem is applicable to linear elastic systems. The theorem can be easily demonstrated as

follows.

The strain energy of an elastic system, subjected to £, P,,...P, in equilibrium is given by the

theorem of Clapeyron (Del Pedro, et al, 2012),

1 ..
U :EaiJ.EPj (ij=12,.n) (a)

where the constants a; =a, are the influence coefficients that relate the deflection 9, at

point k along the force B, due to the entire system of applied forces n,

o,=a,P (k,qg =1,..n). (b)

q- 9

Next we take the derivative of the energy (a) with respect to the force P, along which we

seek the deflectiond,,

ou

OP, 1 op

lalu +—a.b—
o, 2"70pR 7 27 'OP,
1

1
=—a.0., P +5aijPi§jk

zljtk/

1 1
:Eaijj +Eal.k3.

Due to the symmetry of the influence coefficients and that j and i are dummy indices, the last

expression becomes,

oUu 1 1 1 1
ﬁzgakf};+§aikf?:§“/q}}+5%};: b ()
k

Due to (b) the last result is the deflection,
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0,= a,

P. )
which is the deflection at the application point of the force P along its direction.

2b. Deflection and rotation due to a force. Calculate the vertical deflection and rotation at

point A due to the force P of the structure in Figure A4, using Castigliano’s second theorem

P and taking into account only the bending moment in each
B A l\ arm. The bending stiffness £/, and geometry are given.
X< 7 Z MO
K x, . Here we will use (A.4la) to calculate the wvertical
I / deflection. For the rotation, we apply a fictitious moment
X %xz M, at 4, express the energy in terms of P, M, and take the
Rl derivative of the energy with respect to M atM,= 0. For
C . .
e convenience, we express the moments in both arms of the
structure due to both forces. Thus, the bending moments in
Fig. A4. each arm are,
M
0<x,<l: M(x)=Px,+M, = m:xl
oP
M
0<x,<h: M(x)=Pl+M, = M:I
oM,

The vertical displacement, due to P, is given by (we set M;=0)

l h 3 2
A= ouwp) _ 1 J-lexldx1 +J.Plla'x1 _ + PLh
OP EL |+ 0 3EI, EI,

3

and rotation by,

_ouP,M,) 1
oM, El

PI*  Plh
_ Lo

9 =
2EL,  EI,

H(le + M, )dx, +I(P1+M0)dxl}

0=

Theorem of least work, or theorem of Menabrea. The derivative in (A.41a) to calculate the
deflections along applied forces, is also used to determine unknown reactions in statically

indetermined structures. In such cases, the strain energy is expressed in terms of the applied

forces and all independent redundant forces, i.e. the unknown reactions R,R,,..R . These

forces are obtained from the following equation,
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SU(B, Py R, Ry R,
OR, -

0  (j=12..,m). (A.41Db)

This last expression is referred to as the theorem of least work, or theorem of Menabrea. Note
that the number of these equations is equal to the unknown redundant forces or reactions m,

which is the necessary system of equations for the unknown reactions.

2c. calculation of reaction forces in statically indeterminate structure. For the beam

loaded as shown in Figure A5, calculate the reaction forces.

Fig. A5: Horizontal prismatic beam under linearly varying load.

The linearly distributed load at a distance x, from the left support is p(x,) = l; 2 x,. We will

neglect the effects of the shear force and we assume that the horizontal forces are zero. The

beam is statically indeterminate twice. Thus, we replace the reactions (force and moment in

this example) on the right support by two generalized forces R,, R, . Next we express the

bending moments and establish the derivatives of the energy with respect to R,,R,. The

resulting two equations give the answer for the two forces unknown reactions,

1 X
—M(x,) - R + Ryx, _Ep(xl)xl ?1: 0

! 1
= M(x)=-R+ Ry~ p(a)x’ =-R + R, ‘E%XF
M) ame)

oR, ’ OR, !
ﬂ lp, ;5
J- —R +Rx,——*2x |(-1)dx, =0 (a)
0 6 [
l 1 po 3
I _Rl +R2.)C1 _67xl ('xl)dxl =0 (b)
0
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2 4\ 2
Ry —Lp Lot |- = r-Llp 2l
2 24 1 ), 24
2 3 5 2
ETH)SECH SO /S0 U N S SO L
3 30 1), 2 3 30
I’ 3pl
SR =-£ ,  p=_ZB
30 20

With these forces known, the equilibrium equations of the entire beam give the reactions at

B.

3. Uniformly loaded homogeneous string under lateral distributed load. A horizontal
string in Figure A6, is loaded under a large tensile load P. A uniform transvers load g (N/m)
is applied on the string. We assume that the application of ¢ does not change the magnitude

of P and that the string has neither resistance to bending nor weight.

P g (N/m)

/ > P

Fig. A6: A horizontal string under a force P (left) and an
additional lateral distributed force on the right.

We further assume that the deflection u,(x,) is small and the equation of equilibrium can

be established in the unreformed configuration. We look for the governing equation of the

string.

We consider the string on the left under tension and g = 0 as the reference state with zero

potential energy. Upon loadings, the potential energy is,
n=uU-w (@)

where,

!
W = LQ tuds = .([quz (x,)dx, . (b)
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To evaluate U we need to determine the change in length of the string due to the lateral load q.

dx,
P < > P
«— dxl a’u2 duz d
p s [£ dx,

Fig. A7: A schematic of the deformed string showing parameters to calculate the

deformation.

As seen in Figure A7, the elongation ds can be expressed as,
5 ,\112 ,\112 1 5
ds=(dx +di3) " =dx, (1+(du,/ dx)") " = dx, = (dny  dx)” |

Thus, the infinitesimal change in length is ds — dx, results in the strain energy,

; . 2
- l P(du, —dx,) = g ! (j—;‘f] dx, (©)
and the potential energy becomes,
HzU—szj‘(%]zdx —jqu dx (d)
25\ dx, 0 2

The preceding analysis allows us to take the variation of the potential energy,

/
ST =5(U - W)—— (c;zzjé(izzjdxl—qjéuzdxl. (e)
1 1 0

Since the operators d and s may be interchanged (see A.33b) we obtain,

du, \( déu y
) w

The first integral can be evaluated by parts,

!
P duy | douy 4 — pdiha g, 1 Pj5u2 2arx1 = Pja duy %y,
dx, dx, dx, dx,’ dx’
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since du, =0 for x, =0, x, =/.

Therefore,

STl = —PjéuZd 2 dx, — jéuzdxlzo = j[P
X 0

1

2
u22 + qjéuzdxl .

X
And since Ju, is arbitrary we find,

a’u2

+q=0 (@)

xl
which is the equilibrium equation of the string in terms of the vertical deflection u,.

4. Deflection of a beam subjected to a uniform load. Consider the prismatic beam in Figure
AS8. The section’s geometry and elastic constants are known. Analyze the beam using the

principle of minimum potential energy.

Fig. A8: Simply supported beam under uniformly distributed load.

From beam theory we have,

I—d 1’ (a)
2EI
M () =—E1, (b)

1

L 2 L 2
M 1(d
and thus, U = J.il)dxl = EL —[
) 2EI )2

3

”J dx, . (©

The potential energy becomes,

M=U-W = Ezj ( — jdx, [ panay, (d)
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And the principle of minimum potential energy is expressed as,

2 L
ST =6(U-W)=EI j(d usz (6u2)dxl—fp05u2dx|:0
0

2
dx; dx,

The first integral is integrated by parts twice as shown in the following steps,

£ j[d%,z}d O) 4o

dx; dx;
_ gl d2u2 d(éuz)_L _ j~ d(ou,) |, d’u, _ gl d’u, d(ou,) £ d(ou,) d3u2 i
’ i dx}  dx, 1 } o dx, dx; dx}  dx, . } dx, x; :

| 4 )] —Elj (agusz(éuz):H [duzd(auz) du25 }+Elj.5u2)d( J

| dx} dx, | o 1 dx;  dx,
L
_pr,| Lt A0 _d'w, Suy | +EI jéu 4 ) g,
’ | dx] dx, dx; . } 0 dx; v

Here the part in the brackets is zero at the two ends of the beam. Thus, combining the results

with (d) we get,

L 4 L L
d’u d*u
oll = 5(U —W) = El3jéu2 (ﬁ}dxl —jp05u2dxl = IEI3 ( A’ : po}uzdxl =0
0 1 0 0 1
Since Ju, is arbitrary, the last equality is possible only when,

4
du,

2% _ 5, -0
a’xl4 Po

which is the governing equation of the beam in Figure A8. Note that, the theorem of the
minimum potential energy for the loaded beam can be demonstrated following the procedure

in the Example 3.

Rayleigh-Ritz Method. This method is very convenient to obtain approximate solutions
using the principle of minimum potential energy. The essential elements of the method can

be stated as follows: Firstly, a form of the deflection curve, containing a number of unknown
parameters a, (n=1,2,...) is assumed that satisfies the geometric boundary conditions.

Another condition referred to as the static boundary condition which refers to applied forces

and/or moments need not be fulfilled. Secondly, with the assumed solution we determine the
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potential energy of the system in terms of parametersa, (n=1,2,...). As the potential energy

IT must be a minimum at equilibrium, we have,

These algebraic equations are solved for a, (n=1,2,...) and are introduced in the assumed

solution for the deflection curve to obtain the solution for the problem. In practice only a
small number of parameters is necessary for an approximate solution. The accuracy of the
approximation depends on how close the assumed shape of the deflection curve is to the

exact shape.

5. Deflection of s simply supported beam. For the simply supported beam showing in

Figure A8, determine the deflection u,(x,) by employing a power series,
u,(x,) = ax,(L—x)+a,x (L—x)" +.... (a)

For the beam we have EI = constant, L is given the distributed load is constant. Note that the
form satisfies the end conditions of the beam. As an example, let’s consider one term of the

series,
uy(x)=ax,(L-x). (b)

The potential energy is given as,

n=u-w :J%[MJ dx—jpouz(xl )dx, . (c)

2
0 dx;

Note that the energy of a beam under bending is given by the following expression (Del

Pedro, et al, 2012),

.L[ (x)dxl, M(x,)=-El,—=-~ du (x) = U= j-%[db;(x)]
0 1 0 X

Using (b) in (¢) and integrating we obtain,

N=U-W = IEI

3 (—2a,) dx, — Ialpoxl(L—x,)dxl.

0 0
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Carrying out the integration and using the minimization, we obtain,

2
p,L R
u,(x)=—"2"—| ——|—1 | d
2 (X)) 4E]3[L (L (d)
At mid-span expression (d) becomes,

L4
uZ(L/2)=9p6"?- (e)

This result differs from the exact solution, u,(L/2)= p, L'/ 76.8EI,, by 17%. By retaining

the second term in (a), the method provides the exact solution at mid-span. Note that other

approximations can be considered, i.e., a trigonometric series instead of (a).

6. Deflection of a statically indeterminate beam. For the beam shown in Figure A9,

determine the deflection at mid-span. Use as a deflection curve the following polynomial,
u,(x,) = a, +ax, +a,x; +a,x;

where q,,a,,a,,a, are constants.

P
Lo LA | Y EI Lg
| v2 L v2 N .
-1 | X,
— L/A I P — L/4 —

Xow

Fig. A9: A non-uniform beam with fixed ends.

The adopted solution should satisty the geometric boundary conditions. Thus,

du,(x,)

Uy (%,)| o =0 (a); PR B =0 (b)
|
d
(%) x=L2 = 0 (o); u,(x,) w1 = A (d)
dx,

In (d), A is the mid-span deflection to be evaluated. We apply these condition on the assumed

deflection function.

From (a) and (b) we obtain, ¢, =a, =0
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From (c) we have a, =-3a,L/4
From (d) we have a, =—16A/ L.
With these parameters, the deflection curve takes the form,

2
uz(xl):%(3L—4xl) 0<x <L/2

and the strain energy becomes,

L4l 2\ L2l g2\’
Uzz(E[3/2jj d . dxl+2(ﬂjj d =R
2 dx; 2 dx,

o L/4

Introducing the deflection in the strain energy and integrating we obtain,

_ ELA

U I

The potential energy is,

T2ELA®

[=U-="—"PA

The mid-span deflection is obtained by imposing the condition,

ol o [72EI3A2

PL’
Aol L ‘PAjzo -AT

" 144EL°
7a. Buckling of a vertical beam. Use the Rayleigh-Ritz method to determine the buckling
load of a straight, uniform column subjected to a vertical compression load P (Figure A10).

We assume that the deflection takes the form,

u,(x,) = al);l (a)

Here a represents the deflection at the free end. Note that form (a) satisfies the geometric

boundary condition at x, =0.
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The potential energy of the column is,

H:U—W:jmdxl _PA. (b)

0 3

Similar to the Example 5, 1 the strain energy is,

M(x,)=—EI,

1

7

Fig. A10: Prismatic column
under compression.

d”z (x) N I

(dzuz(x )] dx, (c)

Regarding the potential energy of the applied load, the vertical displacement A is calculated

by considering the change in length of the beam (see also Example A3),

ds = (dx? +du?) = dx, (1+(du, /dx ) zdy, (1 +%(du2 /dx1)2j

dA =ds—dx, =%(du2 /dx,)* dx,

Thus,

W =PA= IP(dS dxl)—zj[cjll;jdxl

0

(d)
0
Using (a) in (d) and integrating we obtain,
2ElL,a> 2Pa’
=" _ . e
r 3L (©)
Taking the derivative aI1/éa = 0 of (¢) we get,
EI
P =3—7F
I ()
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This value is about 22% higher than the exact one, P, =2.4674EL, / I’ . We can do better if

we express the energy in the beam in terms of the bending moment,

tM*(x)
U= .
! 2B &)

The bending moment is given by M (x,) = P(a —u,) and thus,

Lp2e . \2 L 2
o 2EL o 2\ dx,
Using (a) in (h) the potential energy takes the form,

_ 8 Pd’L 2Pa’
30 EI, 3 L

EI,

From the minimization 411/ éa = 0, we obtain the critical load, P, =2.50 I

This value is 1.3% higher than the exact one. It is interesting to underline here the reason for a
better estimation of the critical compressive force when the bending moment is used: When
the deflection is used in calculating the energy, it is twice differentiated. This step ‘reduces’
the quality of approximation in the method because the error increases with differentiation.

However, using the moment instead, we assume the second derivative of the deflection, given

their relationship from beam theory, i.e. M (x,) ~ d’u, / dx] without subsequent differentiation.

7b. Buckling of a vertical bar. A tapered bar of constant thickness is loaded under
compression as shown in Figure A11. Determine the critical load using the stationary value of

the potential energy. The variation of the moment of inertia is,

3x L
L(x)=I]1+—|, 0<x <—
3( 1) O( Lj 1 2 ()
a
3x L
L(x)=14-—"|  =<x <L
=n(4-2] Ly
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where [ is the moment of inertia at the ends of the bar. Use the principle of minimum potential

energy and represent the deflection as,

X
i ,(x,) = a, sin L (b)
L
The assumed form of the deflection satisfies the boundary
L2
/ conditions, i.e. u,(x,)=0 at x, =0 and x, =L.
The energy components are given by the expressions (d) in
L2 Example 7a,
O
Sl LEL(du,) . P(du,)
p M=U-W=[=2 =2 | dy-[>| 22| dv (©
o 2\ dx o 2 dx,
Fig. All: Tapered bar
under compression.
Due to symmetry, the energies are calculated by the integrals,
L2 4 4
U=2 ﬂ(1+ﬁjaf”—4sin2ﬂdxl _S2bm By (d)
) 2 L 161
L/2 2 2
U/U":2_[£a,27r—2coszﬁafxI zﬂaf (e)
) L 4L
Thus,
82157°El, , ©°P ,
M=U=W =
8.2157*El, =’P
S =6(U-W)= 0 da; =0
( )[ e 4Lj | ®
8.2157'El, =’P El,

o=t o p =20257L
16 AL L

8. Applications to finite elements. In the finite element method, the solid is discretized by

a finite number of elements connected at their nodes and along their inter-element boundaries

as well.
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Fig. A12: Schematic of a discretization of a plate in plane stress and (€) as an element with

the three nodes.

Here we must impose equilibrium nodal compatibility on the nodes and along the boundaries
between the elements. The method relies on the minimization of the potential energy of the
system expressed in terms of displacement functions. A typical illustrative example is shown
in Figure A12 where a triangular element is used. Suppose that the plate is discretized by m

elements. Using matrices and vectors, for each one, we define

- the nodal displacement vector,
(5)e:(u{,u{,uf,u§,ull,ué) (a)
- the displacement functions within the element,
(/) = o)y (35,)) (b)
or,
(/). =[V1(5) ©
The elements of [ N]are functions of position within the element.

- the strain displacement relation,

(¢), =[B](9) )

e

- the constitutive response for each element,
(o). =[€](e), ©)
The principle of minimum potential energy is expressed for the entire body as follows (see
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A35),

le er aﬁagydv—zlljme Tiéuids—zlljge foudv=0. ()

Here Q,,0Q indicate the volume and surface of element e. Next, we use (b) in (),

m

-]

I, [0 ), (), (1) Jar- D[, () ()ds=0 @

e

Using (c), (d) and (e), the last expression becomes,
2(55 ). [[k]e (6) —(Q)e} =0. (h)

In (h), (55 ) is the virtual nodal displacement vector of element e, [k] is its stiffness matrix
and (§) ,(Q), are vectors with the element’s nodal displacements and nodal forces, due to

body forces and surface tractions. Since the variations (55 ) are independent and arbitrary

for a single element, (h) results in,
[%1.(5) =(2).- (i)
The sum in (g) can be expressed in the following matrix form for the entire discretized body,

03/ [IKI6)-(@) ]

The last equation must be satisfied for arbitrary variations of all nodal displacements(é&~ )

and thus, we obtain the system of equations for the entire solid,
[K](%)=(2) )
where,

[K]=3 1], nd (0)=3(0),. ®

The matrix [K] and total force vector (Q) are identified by proper superposition of all
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elements stiffness and nodal forces.
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