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APPENDIX A: Energy concepts and analysis in linear elasticity 

In what follows, we are concerned with the equilibrium of a solid, made of an isotropic 

homogeneous linearly elastic material and subjected to body forces, prescribed 

displacements and/or tractions on its boundary.  

 

Fig. A1: Schematic of a 

solid in equilibrium 

subjected to boundary 

tractions and 

displacement. 

 

 

 

We will use simple arguments to prove the uniqueness of an elastic solution when it exists. 

We will also discuss methods of solution based on energy and define certain approximate 

methods of solution.  For completeness, we start with the system of equations for a solid in 

static equilibrium. 

Boundary value problems of static linear elasticity.  

For a solid in equilibrium, we have the following system of equations (Chapter 7: Botsis and 

Deville, 2018). 

The Field Equations of Linear Elastostatics 

The system of field equations consists of: 

- the 3 equations of equilibrium 

 , 0 , 0       f      ij j iσ f divσ+ = + =      (A.1)  

where f is body force vector. 

- the 6 equations defining the strain-displacement relation 
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 ( ) ( ), ,
1 1, ( )
2 2

T
ij i j j iε u u= + = ∇ ∇       u+ uε     (A.2) 

- the 6 equations defining the isotropic homogeneous stress-strain relation 

2 , 2       Iij kk ij ijσ λε δ με λtr μσ ε ε= + = +     (A.3a) 

Here the Lamé constants λ  and μ , are independent of x. They are related to Young’s 

modulus E and Poisson’s ratio ν  by, 

/ (1 )(1 2 )λ Eν ν ν= + − ,   / 2(1 )μ E ν= + .    (A.3b) 

A simple counting shows that we have 15 unknowns (3 displacement components ui, 6 strain 

components ijε  and 6 stress components ijσ ) and 15 equations. Accordingly, the problem is 

well - posed. 

There are two ways for combining the 15 equations of (A.1)-(A.3). The first way corresponds 

to taking the three displacement components ui as the unknowns. Consequently, we introduce 

(A.2) into (A.3) to obtain, 

 , , ,( )ij k k ij i j j iu u uσ λ δ µ= + +       (A.4) 

Substituting (A.4) into (A.1) gives, 

, ,( ) 0k ki i jj iu u fλ µ µ+ + + = .      (A.5a) 

These are the well-known Navier equations. Using the usual differential operator notations, 

we can write (A.5a) as,  

( ) ( ) 0u u fdivλ µ µ+ ∇ + ∆ + =     (A.5b) 

where ∆  represents the Laplace operator. For (A.5) to make sense, the displacement must be 

twice continuously differentiable.  

The second way consists in considering the 6 stress components ijσ as the unknowns. To 

proceed, we first replace the stress-strain relation (A.3) by its inverse, the strain-stress 

relation, 

1 1
2 (3 2 ) 2

I Iλ ν νtr tr
μ μ μ E E

+
= − + = − +

+
ε σ σ σ σ

λ
  (A.6a) 
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1 1
2 (3 2 ) 2ij kk ij ij kk ij ijE E

λ ν νε σ δ σ σ δ σ
µ λ µ µ

+
= − + = − +

+
  (A.6b) 

Next, substituting (A.6b) into the 6 strain compatibility equations (Chapter 2: Botsis and 

Deville, 2018), 

, , , , 0ij kl kl ij jl ik ik jlε ε ε ε+ − − =       (A.7) 

we obtain 

, , , , ,(1 ) (1 )( ) 0ij kk mm nn ij pp ij iq qj jr riν σ νσ δ σ ν σ σ+ − + − + + =   (A.8) 

Taking the derivatives of the equilibrium equations (A.1) twice, we have the following result, 

, , , ,iq qi jr ri i j j iσ σ f f+ = − −       (A.9) 

Using (A.9), relation (A.8) becomes, 

, , , , ,(1 (1 )( ) 0ij kk mm nn ij pp ij i j j iν)σ νσ δ σ +ν f f+ − + + + =    (A.10) 

Taking the trace of this equation results in, 

, ,(1 (1 )mm nn k kν)σ +ν f− = −       (A.11) 

Using this relation in (A.10) and assuming 1ν ≠ − , we obtain, 

, , , , ,
1 0

1 1ij kk mm ij i j j i n n ij
νσ σ f f f δ

ν ν
+ + + + =

+ −
   (A.12) 

These are the stress compatibility equations of Beltrami-Michell. If body forces are constant, 

(A.12) reduces to, 

, ,
1 0

1ij kk mm ijσ σ
ν

+ =
+

       (A.13) 

Note that (A.13) are trivially satisfied when ijσ are affine functions of x. 

The Boundary Value Problems of Linear Elastostatics. The preceding field equations can 

be solved only when appropriate boundary conditions are imposed. Consider a solid 

occupying a domain Ω  of 3 with Ω∂  as its boundary (Figure A1). In a general manner, we 

partition the boundary surface Ω∂  into two parts: Ω u tS S∂ = ∪  with  u tS S∩ =∅  where: 
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uS  represents the part of Ω∂  on which the displacement iu  is prescribed, i.e. 

 i iu u=   on uS         (A.14) 

tS  denotes the part of Ω∂  on which the surface traction it are assigned, i.e. 

σi ij j it n t= =    on tS        (A.15)   

where nj are the components of an outward unit normal to tS . 

If neither uS  nor tS  is empty, the corresponding boundary condition is called a mixed 

boundary condition. When tS  is empty, we are concerned with a displacement boundary 

condition. In the case of uS =∅ , the boundary condition corresponds to a traction boundary 

condition.  

With the preceding definitions, we can formulate the classical boundary value problems of 

linear elastostatics. 

The mixed boundary value problem in terms of displacement components. Condition 

(A.15) can be expressed in terms of ui via (A.4), 

, , ,( )k k i i j j i j iu n u u n t+ + =λ µ     on   tS  .    (A.16) 

Navier's equations (A.5) together (A.14) and (A.16) give the formulation of the mixed 

problem in terms of displacement components, 

 , ,( ) 0k k i i mm iu u fλ µ µ+ + + =   over   Ω     (A.17a) 

 i iu u=   on uS         (A.17b) 

, , ,( )k k i i j j i j iu n u u n t+ + =λ µ    on   ∂Ω  .   (A.17c) 

The displacement boundary value problem. If tS =∅  so that Su = ∂Ω , the foregoing 

formulation reduces to, 

 , ,( ) 0k k i i mm iu u fλ µ µ+ + + =    over   Ω      (A.18a) 

 i iu u=    on  ∂Ω .       (A.18b) 
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The traction boundary value problem in terms of displacement components. If uS =∅

, then tS = ∂Ω . We can simplify (A.17) to, 

 , ,( ) 0k k i i mm iu u fλ µ µ+ + + =    over  Ω ,     (A.19a) 

 , , ,( )k k i i j j i j iu n u u n t+ + =λ µ    on tS .     (A.19b) 

The traction boundary value problem in terms of stress components. We set uS =∅  so 

that St =∂Ω . The equilibrium equations (A.1), the stress compatibility equations (A.12) and 

the condition (A.15) constitute the formulation of the traction problem in terms of stress 

components, 

,σ 0ij j if+ =    over  Ω        (A.20a) 

, , , , ,
1 0

1 1ij kk mm ij i j j i n n ij
νσ σ f f f δ

ν ν
+ + + + =

+ −
   over  Ω   (A.20b) 

σi ij j it n t= =    on   tS .       (A.20c) 

It is worth noticing that the traction boundary value problem can be formulated in terms of 

displacement components whereas the mixed or displacement boundary value problem 

cannot generally be formulated in terms of stress components. 

Energy principles 

After the boundary value problem is formulated, two important questions need to be asked: 

(a) does a solution exist? (b) if it exists, is it possible to have more than one? Although a 

demonstration of the existence of solution is beyond the scope of this introduction, we do 

examine here its uniqueness.  

In solving problems of linear elasticity, we are often led to postulate certain forms of 

displacement and stress fields and verify if equations (A.1) - (A.3) together with prescribed 

boundary conditions are satisfied. If the answer is positive and if the uniqueness of solution 

can be ensured, we can conclude that the postulated fields constitute the solution of the 

problem.  

In developing the theory and models in mechanics, solids and structures, the energy of the 

system plays an indispensable and significant role.  Besides, in several cases in engineering, 
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we encounter difficulties in obtaining exact solutions of the governing equations. Thus, it is 

important to consider various approximate methods. A group of methods is based on results 

that these equations can be obtained from minimization of the system’s potential energy.     

Below, present some important concepts on energy give a general result about the uniqueness 

of solution in the isotropic case. Its proof is based on an energy equation and can easily be 

extended to the anisotropic case. Afterwards, we discuss the principles of virtual work and 

potential energy and their use in mechanics. These principles are very useful in the solution 

of important problems in engineering. Application examples are given at the end. 

Theorem of work and energy. Let , ,u   ε σ  be the displacement, strain and stress fields 

satisfying the equations (A.1) - (A.3) together with the boundary conditions (A.14) and 

(A.15). By taking the scalar product of (A.1) with ui, and integrating over Ω , we can write, 

 , 0ij j i i iσ u dv f u dv
Ω Ω

+ =∫ ∫ .      (A.21) 

Using the divergence theorem, the symmetry ij jiσ σ=  and Cauchy's formula, i ij jt σ n= we can 

modify the first term as follows, 

 

( ) ( ) ( ), , ,

, ,

, ,

, ,

( ), ( ),

1 ( )
2
1 ( )
2
1 ( )
2

ij j i ij i j ij i j ij i j ij i j

ij i j ij i j ij i j

ij i j ij i j ji j i

ij i j ij i j ij j i

ij i j

σ u dv σ u σ u dv σ u dv σ u dv

σ u n ds σ u σ u dv

σ u n ds σ u σ u dv

σ u n ds σ u σ u dv

σ u n d

Ω Ω Ω Ω

∂Ω Ω

∂Ω Ω

∂Ω Ω

∂Ω

= − = −

 = − + 
 
 = − + 
 
 = − + 
 

=

∫ ∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ , ,
1 ( )
2

.

ij i j j i

ij i j ij ij

i i ij ij

s σ u u dv

σ u n ds σ ε dv

t u ds σ ε dv

Ω

∂Ω Ω

∂Ω Ω

 − + 
 

= −

= −

∫

∫ ∫
∫ ∫

 (A.22) 

Substitution of (A.22) into (A.21) results in, 

ij ij i i i iσ ε dv t u ds f u dv
Ω ∂Ω Ω

= +∫ ∫ ∫ .     (A.23) 

Observe that the left-hand side of this expression is the work done by the stress σ  on the 

strain ε , that corresponds to the change in internal energy, while the right-hand side 
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represents the sum of work done by the surface and body forces during the displacement u. 

Since the stress components ijσ  are related to the strain components ijε  by (A.3), we have, 

( )2 2 ( )ij ij ii kk ij ij ijσ ε dv λε ε με ε dv W ε dv
Ω Ω Ω

= + =∫ ∫ ∫ .   (A.24) 

where use has been made of the strain energy density ( )ijW ε  for an isotropic linearly elastic 

material. In view of (A.24), (A.23) can be written as, 

( )1 ( )
2 i i i i ijt u ds f u dv W ε dv

∂Ω Ω Ω
+ =∫ ∫ ∫ .    (A.25) 

In the literature, (A.25) is referred to as the theorem of work and energy, or principle of 

conservation of mechanical energy, for an isotropic linearly elastic solid.  It states that half of work 

of the external forces, applied to the solid, equals the strain energy of deformation. 

Potential energy. At this point, we introduce an important energy function in mechanics, defined as 

the potential energy Π , and given by the difference of the strain energy U and the work of applied 

forces  , 

UΠ = − .        (A.26a) 

For a linear elastic solid, they are expressed as follows, 

i i i it u ds f u dv
∂Ω Ω

= +∫ ∫       (A.26b) 

( )1 1 2 ( )
2 2ij ij kk ij ij ij ijU σ ε dv λε δ με ε dv W ε dv

Ω Ω Ω
= = + =∫ ∫ ∫ .  (A.26c) 

With these expressions the potential energy for a linear elastic solid is given by, 

( )( )ij i i i iU W ε dv t u ds f u dv
Ω ∂Ω Ω

Π = − = − +∫ ∫ ∫ .   (A.27d) 

Accounting for (A.25), we obtain, 

( )( ) ( )ij i i i i ijU W ε dv t u ds f u dv W ε dv
Ω ∂Ω Ω Ω

Π = − = − + = −∫ ∫ ∫ ∫ . (A.27e) 

The potential energy is taken as zero when the body is in its undeformed state. In addition, it 

is important to note that   is not the work done by the external forces in deforming the 

body between loading and equilibrium. The work done by the external forces is  1
2
. Thus, 
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the potential energy can be interpreted as energy ‘recovered upon unloading’, or energy for 

processes other than deformation, and for a linear elastic solid it is, 

  1
2

U UΠ = − = − = −         (A.27f) 

because 1
2

U =   as shown in (A.25).   

Volumetric and distortional components of the strain energy. It is very useful to express 

the elastic strain density in terms of volumetric ( )p ijW ε and distortional  ( )d ijW ε parts. To do 

so, we introduce the strain deviator d
ijε ,   

1
3

d
ij ij kk ijε ε ε δ= − .       (A.28a) 

Thus, it is not difficult to show that the strain energy is, 

( )2
0

9( ) ( ) ( )
2 2

d d
ij ii kk ij ij ij ij p ij d ij

λW ε ε ε με ε K ε με ε W ε W ε= + = + = + . (A.28b) 

Here  (3 2 ) / 3K λ µ= +  is the bulk modulus and 0
1
3 iiε ε= .With this expression, (A.25) can be 

written as, 

( )( )2
09 2 d d

i i i i ij ijt u ds f u dv K ε με ε dv
∂Ω Ω Ω

+ = +∫ ∫ ∫ .   (A.29) 

For an isotropic material, the stability hypothesis amounts to the condition that,  

 0, 0   K µ> > .       (A.30) 

These inequalities are physically meaningful because they cannot be zero or negative.  

Uniqueness of the solution. After the foregoing introduction, we can state and demonstrate the 

uniqueness of the solution with the following theorem. 

Theorem. Let ( )(1) (1) (1), ,u ε σ  and ( )(2) (2) (2), ,u ε σ  be two sets of displacement, strain and 

stress fields satisfying the field equations (A.1) - (A.3) together with the boundary conditions 

(A.14) - (A.15).  

If uS ≠ ∅ , then 



11/35  

(2) (1) (2) (1) (2) (1), ,u u         ε ε σ σ= = = . 

If uS =∅ , then 

 (2) (1) (2) (1) (2) (1), ,u u w         ε ε σ σ= + = =  

where w is an infinitesimal rigid body rotation. 

Demonstration  

Let’s define the following differences (2) (1) (2) (1) (2) (1), ,u = u u         ε ε ε σ σ σ− = − = − . 

Then u, ε  and  σ  fulfill the field equations (A.1) - (A.3) with zero body forces, i.e. 

 0 = if ,        (a) 

and u and σ  satisfy the following boundary conditions: 

0 , 0 =           =    i u i ij j tu on S t σ n on S=     (b)  

Thus, (A.29) becomes, 

( )2 0d d
ii kk ij ijKε ε με ε dv

Ω
+ =∫ .      (c) 

Since 0K > and 0μ > , (c) holds if and only if iiε  = 0 and 0d
ijε = . This amounts to writing,  

0d
ij ijε ε= =         (d) 

which, due to (A.3a), implies, 

 0ijσ = .        (e) 

Moreover, (d) means that u is at most an infinitesimal rigid displacement w. If uS ≠ ∅ , u = 0 

on uS , so that we must have w = 0 everywhere. However, if uS =∅ , i.e., if surface tractions 

are assigned over the entire boundary ∂Ω , u(2) and u(1) may effectively differ by an 

infinitesimal rigid displacement w.  

From the above demonstration, we see that the key condition ensuring the uniqueness of 

solution are the inequalities (or stability condition) (A.30). If this condition holds, the 

theorem tells us that:  
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- for a mixed or displacement boundary value problem, the displacement, strain and 

stress fields are unique. 

- for a traction boundary value problem, the strain and stress fields are unique while 

the displacement field is unique only to within an infinitesimal rigid displacement. 

Principle of Virtual Work. The theory of linear elasticity may be developed from energy 

considerations. This alternative approach has the advantage of obtaining approximate 

solutions of several important problems in solids and structures. In this section, we present 

the principle of virtual work and the principle of minimum potential energy in linear elasticity, 

which are also the theoretical underpinnings for a variety of numerical methods, such as finite 

elements, currently used to solve boundary value problems of linear elasticity. 

Consider a solid in equilibrium under the action of body forces, subjected to mixed 

boundary conditions, 

, 0      ij j iσ f over+ = Ω       (A.31a) 

       i i uu u on S=        (A.31b) 

      ij j i tσ n t on S=        (A.31c) 

If we need to move the solid to another position, additional force is required and thus, the 

original system of forces must be altered in such a motion. Let’s introduce the notion of a 

virtual displacement field. The word ''virtual'' means not necessarily real. It is an arbitrary 

displacement which does not affect the force system acting on the solid and during the 

process of its application, all forces remain constant in magnitude and direction.  

The magnitude of a virtual displacement is arbitrary. However, because in an infinitesimal 

actual displacement, the resulting changes in the acting forces are small and considered 

negligible, in comparison to the forces themselves, a virtual displacement is often considered 

as an infinitesimal real displacement and thus, the changes in the forces are negligible.  

In what follows, a virtual displacement is defined as a possible variation uδ  of the real 

displacement field u of the solid.  It is arbitrary and is subjected to the following restrictions:  

1. The components of 1 2 3( , , )u δ δu δu δu  are small, continuous and single-valued 

functions.  
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2. During a virtual displacement, surface, body forces and internal stresses are constant 

in magnitude and direction. 

3. The virtual displacement does not violate the prescribed displacement condition 

(A.31b). This definition implies that uδ  is a virtual displacement if and only if, 

0=       i uδu on S        (A.32a) 

4. With each virtual displacement vector uδ , we associate a virtual strain tensor δε , 

 , ,
1 ( )
2ij i j j iδε δu δu= +        (A.33a) 

1 1 ( ) ( )
2 2

ji
ij i j

j i j i

uuδε δ δu δu
x x x x

   ∂∂ ∂ ∂
= + = +      ∂ ∂ ∂ ∂   

   (A.33b) 

It is important to note here that the operators d and δ can be interchanged as seen in (A.33b). 

Based on the preceding discussion, we can state the following important theorem. 

Theorem of Virtual Work. Let uδ  be a virtual displacement field and let σ  be a stress 

field verifying the equilibrium equation (A.31a) and the traction boundary condition (A.31c). 

Then, the virtual strain energy is equal to the virtual work done by the applied forces, 

t
ij ij i i i iS

δU σ δε dv = t δu ds+ f δu dv
Ω Ω

= ∫ ∫ ∫     (A.34a) 

Demonstration 

By means of a change in notation, the arguments we use here are identical to those leading 

to formula (A.23). That is, we take the scalar product of (A.31a) with iδu and integrate over 

Ω  to obtain, 

, 0ij j i i iσ δu dv+ f δu dv
Ω Ω

=∫ ∫        (A.34b) 

Using the divergence theorem and the symmetry ij jiσ σ= , we can write, 

( )ij, j i ij i , j ij i, j ij j i ij ijσ δu dv = (σ δu ) σ δu dv = σ n δu ds σ δε dv
Ω Ω ∂Ω Ω

− −∫ ∫ ∫ ∫  (A.34c) 

Substituting this into (A.34b) we obtain, 
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ij ij ij j i i iσ δε dv σ n δu ds f δu dv
Ω ∂Ω Ω

= +∫ ∫ ∫     (A.34d)  

Due to (A.31c) and (A.32), (A.34d) becomes (A.34a).The two integrals on the right hand side 

give the virtual work of the applied forces, 

ij j i i iδ σ n δu ds f δu dv
∂Ω Ω

= +∫ ∫      (A.34e) 

In mechanics, (A.34a) is the result of the principle of virtual work. It is often used to establish 

the governing equation of a mechanical system.  It is also important to remark that in the 

demonstration of the virtual work theorem, no constitutive relations have been involved and 

thus, (A.34a) holds regardless of material properties.  

Principle of Minimum Potential Energy. We can define now a very important principle in 

mechanics. Using (A.34a and e) we can write, 

( ) ( ) 0ij ij ij j i i iδ δ U σ δε dv σ n δu ds f δu dv
Ω ∂Ω Ω

Π = − = − + =∫ ∫ ∫ . (A.35) 

This last equation implies that at equilibrium, the potential energy of a solid takes a stationary 

value.  This leads to the definition of the principle of potential energy as follows: of all 

displacement fields satisfying the continuity and boundary conditions, of the solid in 

equilibrium, the actual displacement field makes the potential energy a stationary value. It can 

also be shown that this stationary value is a minimum.  

Now we proceed to show that the solution of the mixed boundary value problem (A.17), if it 

exists, can be characterized by the displacement field minimizing the potential energyΠ . 

Before proceeding, we need to define a kinematically admissible displacement. 

A displacement field u  is said to be kinematically admissible if it respects the assigned 

displacement on uS , i.e., 

       i i uu u on S= .       (A.36) 

Theorem of Minimum Potential Energy. Assume that the mixed boundary value problem 

(A.17) has the solution u . Then, 

 ( ) ( )u uΠ ≤ Π          (A.37) 

for every kinematically admissible displacement u . 
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Demonstration 

Since u  is a solution of the mixed boundary value problem (A.17) and u is a kinematically 

admissible displacement, the difference, 

 u u uδ = −         (A.38) 

satisfies condition (A.32) so as to be a virtual displacement. Expressing      u u uδ= +        the 

potential energy is, 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )   
Ω ∂Ω Ω

Ω ∂Ω ∂Ω Ω Ω Ω Ω

Π = Π + = + − + − +

= + − − − − + −

∫ ∫ ∫
∫ ∫ ∫ ∫ ∫ ∫ ∫

i i i ij ij i i i i i i

ij ij i i i i i i i i ij ij

u u δu W ε δε dv t u δu ds f u δu dv

W ε δε dv t δu ds t u ds f δu dv f u dv W ε dv W ε dv



Note here the strain energy is added and subtracted at the end. Recalling (A.27d), we write 

the last expression in the following way, 

( )( ) ( ) ( ) ( )i i i ij ij ij i i i iu δu u W ε δε W ε dv t δu ds f δu dv
Ω ∂Ω Ω

Π + −Π = + − − −∫ ∫ ∫  (b) 

Next, we expand the strain energy density in a power series and keep the terms up to the 

second order, 

2( ) ( )1( ) ( )
2

ij ij
ij ij ij ij ij kl

ij ij kl

W ε W ε
W ε δε W ε δε δε δε

ε ε ε
∂ ∂

+ = + +
∂ ∂ ∂

.  (c) 

Inserting into (b) and recalling that ( ) /ij ij ijW ε ε σ∂ ∂ = we obtain,  

2 ( )1( ) ( )
2

ij
i i i ij ij i i i i ij kl

ij kl

W ε
u δu u σ δε dv t δu ds f δu dv δε δε dv

ε εΩ ∂Ω Ω Ω

∂
Π + −Π = − − +

∂ ∂∫ ∫ ∫ ∫ . 

The first three terms cancel due to the principle of virtual work (A.34a) and thus, 

2 ( )1( ) ( )
2

ij
i i i ij kl

ij kl

W ε
u δu u δε δε dv

ε εΩ

∂
Π + −Π =

∂ ∂∫ .   (d) 

Since ( )ijW ε is positive definite, the integrand in (d) is positive definite. Thus, (A.37) is 

demonstrated.  

The theorem of minimum potential energy asserts that the difference between the global strain 

energy and the work done by the body forces and prescribed tractions takes a smaller value 

for the mixed boundary problem than any kinematically admissible displacement. Note that 
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the standard finite element method for linear elasticity is based on this principle.  

To apply the principle of minimum potential energy, the strain energy should be expressed 

in terms of strains or displacements and not containing any stress components. This is 

because of the definition of the strain energy ( )ijδW ε . In several problems with beams, it is 

convenient to express the strain components in terms of a single deformation or deflection 

parameter. A typical example is the deflection 2 1( )u x  of a beam. In the strain energy density 

( )ijW ε where the strains are explicit functions of 2 1( )u x  we have, 

2 2
2 2

( ) ( )
( ) ( )      ij ij ij

ij ij
ij

W ε dε dW ε
δW ε du δW ε δu

ε du du
 ∂

= ⇒ = 
∂  

.   

Examples 

Below we demonstrate examples using the energy methods discussed above.  We also recall 

the theorems of Castigliano with representative applications. 

1a. Finite changes and virtual changes in potential energy. The principle of virtual work or 

minimum potential energy is expressed as 0δΠ = . From this principle, we can obtain the 

governing equations of the system. Let us discuss the difference between 0δΠ =  and potential 

energy changes due to a finite change in displacement, i.e. 0∆Π > . 

The potential energy takes its minimum value for a given system in equilibrium. If this 

minimum value is ( )uΠ  we know from calculus that ( ) ( )u+ u u∆Π = Π ∆ −Π must be larger 

than zero when 1 2 3( , , )u u u u∆ ∆ ∆ ∆ is a small but finite quantity.  

The variation 0δΠ = corresponds to a virtual displacement 1 2 3( , , )u δ δu δu δu . From calculus, 

we know that a function ( )F x  is stationary at x if  ( ) / 0dF x dx =  or ( ) 0dF x = for an 

infinitesimal change in the variable.  

For an actual infinitesimal displacement, the actual changes in the forces due to the 

displacement are small and can be neglected in comparison to the forces themselves. Thus, a 

virtual displacement can be considered as an infinitesimal actual displacement, which allows 

us to write 0δΠ = . 
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1b. Statically indeterminate truss: a truss ABCD with three members is subjected to a force 

P at D (Figure A2). After loading, point D is displaced at D’. Using the principle of virtual 

work and the compatibility of deformation at D, calculate the tensions in the three members 

of the truss. The geometry, Young’s modulus E and cross section S are known.  

 

 

 

 

 

 

 

 

 

Fig. A2: A three-member truss subjected to a vertical force P at D. Also shown are  the 

forces on each member and the displacement of point D. 

The given structure is statically indetermined of degree one. To find the forces we should 

impose the compatibility of deformation at point D and determine the vertical displacement 

∆ . 

Given the symmetry of the structure, the tensions in the bars are, 

BD
SET
L

= ∆ , 
2cos( cos )

/ cosAD CD
SE SET T

L L
φφ

φ
= = ∆ = ∆ .  (a) 

Now, to determine ∆  we should express the strain energy in terms of displacements and 

apply the virtual work principle. Thus, for each bar in tension (Del Pedro et al, 2012), the 

strain energies are given by, 

2
21 1 1 1

2 2 2 2
BD BD

BD BD BD
T L T L ESU T T
ES ES L

= ∆ = = = ∆ .   (b) 

Similarly,  

L

P

A B C

D

φφ

D’ ∆

φφ

BCT
CDTADT

D

∆

φφ

''D cosφ= ∆

''D

'D

''D
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2 31 cos
2AD

ESU
L

= ∆ φ .      (c) 

We can now express the potential energy of the system and its variation as, 

( ) ( )2 2 0  , BD AD BD ADU U U P δ U U PΠ = − = + − ∆ + − ∆ =    (d) 

from which we have successively,  

( )2BD ADδ U U
P

δ
+

⇒ =
∆

      (A.39) 

or 

2 2 3

3

3
3

1 12 cos 0
2 2
1 1(2 ) 2 (2 )cos
2 2

2 cos .
(1 2cos )

    

        

ES ES P
L L

ES ES P
L L

ES ES LPP
L L ES

 ∆ + ∆ − ∆ = 
 

⇒ ∆ ∆ + ∆ ∆ = ∆

⇒ ∆+ ∆ = ⇒ ∆ =
+

δ φ

δ δ φ δ

φ
φ

 

With this displacement, the forces in the bars are calculated using (a), 

2

3 3

cos,
1 2cos 1 2cosBD AD CD

P PT T T φ
φ φ

= = =
+ +

   .      

Castiglinano’s first theorem. The expression (A.39) in the preceding example is called 

Castigliano’s first theorem which states that, to calculate a single force, i.e. iP , we allow a 

virtual displacement δ∆ that is continuous everywhere and vanishes at all points of loading 

except along the force iP . In this virtual displacement, a virtual strain energy and external 

virtual work i iPδ∆  are produced. According to the minimum potential energy principle we 

have, 

  i iU U PΠ = − = − ∆  and   ( ) 0i i i
i

δUδ δ U P P
δ

Π = − ∆ = ⇒ =
∆

    . (A.40) 

The theorem can be applied to linear or nonlinear structural response because linearity is not 

invoked in the demonstration.  

2a. Deflection of a wire.  For the (initially horizontal) elastic wire, subjected to a force at its 
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middle as shown in Figure A3, calculate the relation between P and ∆ using the first Castigliano 

theorem. The length L, modulus E and cross-section S are known. 

 

 

Fig. A3: Elastic wire subjected to a vertical force at its 

middle. 

The elastic energy stored in the entire wire is given by, 

22
2
ESU

L
= ∆   

where ∆ is the elongation of half the initial length 2L, which is expressed as, 

  ( )1/22 2L h L∆ = + −  

Considering small deflections h, we expand the expression in series and retain the two first 

terms to obtain, 

 
2 211 ...

2 2
      h hL L

L L
  ∆ = + + − ⇒ ∆  

   
   

Thus, the energy becomes, 

 4
34

ESU h
L

= . 

From Castigilano’s first theorem we have, 

 3
3

U ESP h
h L

∂
= =
∂

 

Note that the non-linearity comes from the geometry, i.e. large displacements, and not from 

the material.  

Castigliano’s second theorem. There is also the Castigliano’s second theorem, which is very 

important in structural mechanics applications because it allows us to calculate 

displacements due to concentrated forces. This theorem states that in a linearly elastic 

structure, subjected to generalized forces 1 2, ,... nP P P , the partial derivative of the strain energy 

L
A Bh

L

P
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with respect to a particular force gives the generalized displacement at the load point 

application along the direction  of the force,  

1 2( , ,..)
i

i

δU P P
δP

∆ = .       (A.41a) 

Note here that the strain energy should be expressed in terms of the external loads and the 

theorem is applicable to linear elastic systems. The theorem can be easily demonstrated as 

follows.  

The strain energy of an elastic system, subjected to 1 2, ,... nP P P  in equilibrium is given by the 

theorem of Clapeyron (Del Pedro, et al, 2012), 

1 ( 1,2 )
2 ij i jU a PP    i,j = ,...n=        (a) 

where the constants ij jia a=  are the influence coefficients that relate the deflection kδ  at 

point k along the force kP  due to the entire system of applied forces n,  

( , 1 ).k kq qδ a P       k q = ,...n=       (b) 

Next we take the derivative of the energy (a) with respect to the force kP  along which we 

seek the deflection kδ , 

1 1
2 2
1 1
2 2

1 1 .
2 2

ji
ij j ij i

k k k

ij ik j ij i jk

kj j ik i

PPU a P a P
P P P

      = a δ P a Pδ

     = a P a P

∂∂∂
= +

∂ ∂ ∂

+

+

      

Due to the symmetry of the influence coefficients and that j and i are dummy indices, the last 

expression becomes,  

  
1 1 1 1
2 2 2 2kj j ik i kj j kj j kj j

k

U a P a P a P a P = a P .  
P
∂

= + = +
∂

   (c) 

Due to (b) the last result is the deflection,  
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.k ki iδ   a P=         (d) 

which is the deflection at the application point of the force iP  along its direction.  

2b. Deflection and rotation due to a force. Calculate the vertical deflection and rotation at 

point A due to the force P of the structure in Figure A4, using Castigliano’s second theorem 

and taking into account only the bending moment in each 

arm. The bending stiffness 3EI  and geometry are given.  

Here we will use (A.41a) to calculate the vertical 

deflection. For the rotation, we apply a fictitious moment 

0M at A, express the energy in terms of P, 0M  and take the 

derivative of the energy with respect to 0M at 0M = 0. For 

convenience, we express the moments in both arms of the 

structure due to both forces. Thus, the bending moments in 

each arm are, 

1
1 1 1 0 1

1
1 1 0

0

( )0 : ( )

( )0 : ( ) 1

        

        

M xx l M x Px M x
P

M xx h M x Pl M
M

∂
≤ ≤ = + ⇒ =

∂
∂

≤ ≤ = + ⇒ =
∂

 

The vertical displacement, due to P, is given by (we set 0M =0)  

3 2

1 1 1 1
3 3 30 0

( ) 1
3

 =
l hU P Pl Pl hPx x dx Plldx

P EI EI EI
 ∂

∆ = + = + ∂  
∫ ∫  

and rotation by, 

 ( ) ( )
0

2
0

1 0 1 0 1
0 3 3 30 0 0

( , ) 1
2

=
l h

M

U P M Pl Plhθ Px M dx Pl M dx
M EI EI EI

=

 ∂
= + + + = + ∂  

∫ ∫  

Theorem of least work, or theorem of Menabrea. The derivative in (A.41a) to calculate the 

deflections along applied forces, is also used to determine unknown reactions in statically 

indetermined structures. In such cases, the strain energy is expressed in terms of the applied 

forces and all independent redundant forces, i.e. the unknown reactions 1 2, ,... mR R R . These 

forces are obtained from the following equation, 

x3

A
B

C

P

M0
x1

h l

x1x3

x2

x2

Fig. A4.
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1 2 1 2( , ,..., , ..., ...)
0 ( 1,2..., ).       j

j

δU P P R R R
j m

δR
= =    (A.41b) 

This last expression is referred to as the theorem of least work, or theorem of Menabrea. Note 

that the number of these equations is equal to the unknown redundant forces or reactions m, 

which is the necessary system of equations for the unknown reactions. 

2c. calculation of reaction forces in statically indeterminate structure.  For the beam 

loaded as shown in Figure A5, calculate the reaction forces. 

The linearly distributed load at a distance 1x  from the left support is 1 1( ) = opp x x


. We will 

neglect the effects of the shear force and we assume that the horizontal forces are zero. The 

beam is statically indeterminate twice. Thus, we replace the reactions (force and moment in 

this example) on the right support by two generalized forces 1 2,R R . Next we express the 

bending moments and establish the derivatives of the energy with respect to 1 2,R R . The 

resulting two equations give the answer for the two forces unknown reactions,  

1
1 1 2 1 1 1

2 3
1 1 2 1 1 1 1 2 1 1

1( ) ( ) 0
2 3

1 1( ) ( )
6 6

o

xM x R R x p x x

pM x R R x p x x R R x x
l

− − + − =

⇒ = − + − = − + −
 

1 1
1

1 2

( ) ( )= 1;      =  M x M x x
R R

∂ ∂
−

∂ ∂
 

3
1 2 1 1 1

0

3
1 2 1 1 1 1

0

1 (-1) 0                                                    (a)
6

1 ( ) 0                                                    (b)
6

o

l
o

pR R x x dx
l

pR R x x x dx
l

 − + − = 
 

 − + − = 
 

∫

∫



 

R1=MB
A B

p0

l
R2=B

M(x1)

p(x1)

x1

x2

x3

Fig. A5: Horizontal prismatic beam under linearly varying load.



23/35  

22 4
1 1

1 1 2 1 2
0

22 3 5
1 1 1 1

1 2 2
0

=0                0
2 24 2 24

=0        =0 
2 3 30 2 3 30

l

o o

l

o o

p p lx x lR x R R R
l

p p lx x x R lR R R
l

 
− + ⇒ − + = 

 

 
− + − ⇒ − + − 
 

 

2

1 2
3  ;         

30 20
o op l p lR R⇒ = − = −  

With these forces known, the equilibrium equations of the entire beam give the reactions at 

B.  

3. Uniformly loaded homogeneous string under lateral distributed load. A horizontal 

string in Figure A6, is loaded under a large tensile load P. A uniform transvers load q (N/m) 

is applied on the string. We assume that the application of q does not change the magnitude 

of P and that the string has neither resistance to bending nor weight.  

We further assume that the deflection 2 2( )u x  is small and the equation of equilibrium can 

be established in the unreformed configuration. We look for the governing equation of the 

string.  

We consider the string on the left under tension and q = 0 as the reference state with zero 

potential energy. Upon loadings, the potential energy is, 

UΠ = −         (a) 

where, 

2 1 1
0

( )
l

i it u ds qu x dx
∂Ω

= =∫ ∫ .      (b) 

q (N/m) PP

PP l 1x

2x

Fig. A6: A horizontal string under a force P (left) and an 
additional lateral distributed force on the right.
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To evaluate U we need to determine the change in length of the string due to the lateral load q.  

 

 

 

 

Fig. A7: A schematic of the deformed string showing parameters to calculate the 

deformation. 

As seen in Figure A7, the elongation ds can be expressed as, 

  ( ) ( )1/2 1/22 2 2 2
1 2 1 2 1 1 2 1

11 ( / ) 1 ( / )
2

ds dx du dx du dx dx du dx = + = + ≅ + 
 

. 

Thus, the infinitesimal change in length is 1ds dx− results in the strain energy, 

2

2
2 1 1

10 0

( )
2

l l duPU P du dx dx
dx

 
= − =  

 
∫ ∫      (c) 

and the potential energy becomes, 

2

2
2 1

10 0

.
2

l lduPU dx qu dx
dx

 
Π = − = − 

 
∫ ∫     (d) 

The preceding analysis allows us to take the variation of the potential energy,  

( ) 2 2
1 2 1

1 10 0

2
2

l ldu duPδ δ U δ dx q δu dx
dx dx

   
Π = − = −   

   
∫ ∫ .  (e) 

Since the operators d and δ may be interchanged (see A.33b) we obtain, 

2 2
1 2 1

1 10 0

0
l ldu dδuP dx q δu dx

dx dx
  

− =  
  
∫ ∫      (f) 

The first integral can be evaluated by parts,  

2 2
2 2 2 2 2

1 2 2 1 2 12 20
1 1 1 1 10 0 0

l l l
ldu dδu du d u d uP dx P δu P δu dx P δu dx

dx dx dx dx dx
  

= − = −  
  
∫ ∫ ∫  

ds

2
2 1

1

dudu dx
dx

=

P P

P
P

1dx

1dx
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since 2 0δu =  for 1 20,  x x l= = .  

Therefore,  

2 2
2 2

2 1 2 1 2 12 2
1 10 0 0

0       
l l ld u d uδ P δu dx q δu dx P q δu dx

dx dx
 

Π = − − = ⇒ + 
 

∫ ∫ ∫ . 

And since 2δu is arbitrary we find,  

2
2

2
1

0d uP q
dx

+ =        (g)  

which is the equilibrium equation of the string in terms of the vertical deflection 2u . 

4. Deflection of a beam subjected to a uniform load. Consider the prismatic beam in Figure 

A8. The section’s geometry and elastic constants are known. Analyze the beam using the 

principle of minimum potential energy.  

 

 

 

Fig. A8: Simply supported beam under uniformly distributed load. 

From beam theory we have,  

2
1

1
30

( )
2

L M xU dx
EI

= ∫ ,         (a) 

2
2

1 3 2
1

( ) d uM x EI
dx

= −         (b) 

and thus, 
22 2

1 2
1 3 12

3 10 0

( ) 1
2 2

L LM x d uU dx EI dx
EI dx

 
= =  

 
∫ ∫  .    (c)  

The potential energy becomes, 

22
2

3 1 0 2 12
10 0

1
2

L Ld uU EI dx p u dx
dx

 
Π = − = − 

 
∫ ∫     (d) 

L

po
x1

x2
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And the principle of minimum potential energy is expressed as, 

( )
2 2

2 2
3 1 0 2 12 2

1 10 0

( ) 0
L Ld u d δuδ δ U EI dx p δu dx

dx dx
 

Π = − = − = 
 
∫ ∫  

The first integral is integrated by parts twice as shown in the following steps, 

2 2
2 2

3 12 2
1 10

2 2 2 3
2 2 2 2 2 2 2 2

3 3 3 3 12 2 2 3
1 1 1 1 1 1 1 10 00 0

2
2 2

3 2
1 1 0

( )

( ) ( ) ( ) ( )

( )

L

L LL L

L

d u d δuEI dx
dx dx

d u d δu d δu d u d u d δu d δu d uEI EI d EI EI dx
dx dx dx dx dx dx dx dx

d u d δuEI E
dx dx

 
= 

 

          
= − = −         

          

 
= − 

 

∫

∫ ∫

( ) ( )
3 2 3 3

2 2 2 2 2
3 2 3 2 3 23 2 3 3

1 1 1 1 10 00

2 3 4
2 2 2 2

3 2 3 2 12 3 4
1 1 1 100

( )

( ) .

LL L

L L

d u d u d δu d u d uI d δu EI δu EI δu d
dx dx dx dx dx

d u d δu d u d uEI δu EI δu dx
dx dx dx dx

     
= − +    

     

   
= − +   

   

∫ ∫

∫

 

Here the part in the brackets is zero at the two ends of the beam. Thus, combining the results 

with (d) we get, 

( )
4 4

2 2
3 2 1 0 2 1 3 0 2 14 4

1 10 0 0

0
L L Ld u d uδ δ U EI δu dx p δu dx EI p δu dx

dx dx
   

Π = − = − = − =   
   

∫ ∫ ∫

Since 2δu  is arbitrary, the last equality is possible only when, 

4
2

04
1

0d u p
dx

− =  

which is the governing equation of the beam in Figure A8. Note that, the theorem of the 

minimum potential energy for the loaded beam can be demonstrated following the procedure 

in the Example 3.  

Rayleigh-Ritz Method.  This method is very convenient to obtain approximate solutions 

using the principle of minimum potential energy. The essential elements of the method can 

be stated as follows: Firstly, a form of the deflection curve, containing a number of unknown 

parameters ( 1, 2,...) na n =  is assumed that satisfies the geometric boundary conditions. 

Another condition referred to as the static boundary condition which refers to applied forces 

and/or moments need not be fulfilled. Secondly, with the assumed solution we determine the 



27/35  

potential energy of the system in terms of parameters ( 1,2,...) na n = .  As the potential energy 

Π  must be a minimum at equilibrium, we have, 

 
1 2

0, 0,..., 0 =   =   = 
na a a

∂Π ∂Π ∂Π
∂ ∂ ∂

 

These algebraic equations are solved for ( 1, 2,...) na n =  and are introduced in the assumed 

solution for the deflection curve to obtain the solution for the problem. In practice only a 

small number of parameters is necessary for an approximate solution. The accuracy of the 

approximation depends on how close the assumed shape of the deflection curve is to the 

exact shape.  

5. Deflection of s simply supported beam. For the simply supported beam showing in 

Figure A8, determine the deflection 2 2( )u x  by employing a power series, 

2 2
2 1 1 1 1 2 1 1( ) ( ) ( ) ....u x a x L x a x L x= − + − +     (a) 

For the beam we have EI = constant, L is given the distributed load is constant. Note that the 

form satisfies the end conditions of the beam. As an example, let’s consider one term of the 

series,  

2 1 1 1 1( ) ( )u x a x L x= − .       (b) 

The potential energy is given as, 

22
3 2 1

2 1 12
10 0

( ) ( )
2

L L

o
EI d u xU dx p u x dx

dx
 

Π = − = − 
 

∫ ∫ .   (c) 

Note that the energy of a beam under bending is given by the following expression (Del 

Pedro, et al, 2012), 

 
22 2 2

31 2 1 2 1
1 1 3 2 2

3 1 10 0

( ) ( ) ( ), ( )
2 2

      
L L EIM x du x d u xU dx M x EI U dx

EI dx dx
 

= = − ⇒ =  
 

∫ ∫ .  

Using (b) in (c) and integrating we obtain, 

23
1 1 1 1 1 1

0 0

( 2 ) ( )
2

L L

o
EIU a dx a p x L x dxΠ = − = − − −∫ ∫ . 
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Carrying out the integration and using the minimization, we obtain, 

24
1 1

2 1
3

( )
4

op L x xu x
EI L L

  = −     
.      (d) 

At mid-span expression (d) becomes, 

 
4

2 ( / 2)
96

op Lu L
EI

= .       (e) 

This result differs from the exact solution, 4
2 3( / 2) / 76.8ou L p L EI= , by 17%.  By retaining 

the second term in (a), the method provides the exact solution at mid-span. Note that other 

approximations can be considered, i.e., a trigonometric series instead of (a).   

6. Deflection of a statically indeterminate beam. For the beam shown in Figure A9, 

determine the deflection at mid-span.  Use as a deflection curve the following polynomial, 

2 3
2 1 0 1 1 2 1 3 1( )u x a a x a x a x= + + +   

where 0 1 2 3, , ,a a a a  are constants. 

 

 

 

 

Fig. A9: A non-uniform beam with fixed ends. 

The adopted solution should satisfy the geometric boundary conditions. Thus, 

1 1

1 1

2 1
2 1 0 0

1

2 1
/2 2 1 /2

1

( )( ) 0 ( ); 0 ( )

( ) 0 ( ); ( ) ( )

                                                   

                                               

x x

x L x L

du xu x a b
dx

du x c u x d
dx

= =

= =

= =

= = ∆
 

In (d), ∆  is the mid-span deflection to be evaluated. We apply these condition on the assumed 

deflection function. 

From (a) and (b) we obtain, 1 0 0a a= =  

2x

L/4

L/4

L/2
1x

P 1
2

EI1
2

EI EI

L/4
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From (c) we have 2 33 / 4a a L= −  

From (d) we have 3
3 16 /a L= − ∆ . 

With these parameters, the deflection curve takes the form, 

2
1

2 1 1 13

4( ) (3 4 ) 0 / 2     xu x L x x L
L
∆

= − ≤ ≤   

and the strain energy becomes, 

2 2/4 /22 2
3 32 2

1 12 2
1 1/4

/ 22 2
2 2

L L

o L

EI EId u d uU dx dx
dx dx

      = +      
      

∫ ∫ .  

Introducing the deflection in the strain energy and integrating we obtain, 

2
3

3

72EIU
L
∆

= . 

The potential energy is,  

2
3

3

72EIU P
L
∆

Π = − = − ∆ . 

The mid-span deflection is obtained by imposing the condition, 

2 3
3

3
3

72 0
144

             .     EI PLP
L EI

 ∆∂Π ∂
= − ∆ = ⇒ ∆ = ∂∆ ∂∆  

 

 7a. Buckling of a vertical beam. Use the Rayleigh-Ritz method to determine the buckling 

load of a straight, uniform column subjected to a vertical compression load P (Figure A10). 

We assume that the deflection takes the form, 

2
1

2 1 2( ) axu x
L

=         (a) 

Here a represents the deflection at the free end. Note that form (a) satisfies the geometric 

boundary condition at 1 0x = .   
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The potential energy of the column is, 

2
1

1
30

( )
2

L M xU dx P
EI

Π = − = − ∆∫ .   (b) 

Similar to the Example 5, l the strain energy is,  

22 2
32 1 2 1

1 3 12 2
1 10

( ) ( )( )
2

  
L EIdu x d u xM x EI U dx

dx dx
 

= − ⇒ =  
 

∫ (c)   

 

 

Regarding the potential energy of the applied load, the vertical displacement ∆  is calculated 

by considering the change in length of the beam (see also Example A3),  

( ) ( )1/2 1/22 2 2 2
1 2 1 2 1 1 2 1

2
1 2 1 1

11 ( / ) 1 ( / )
2

1 ( / )
2

ds dx du dx du dx dx du dx

d ds dx du dx dx

 = + = + ≅ + 
 

∆ = − =
 

Thus,  

2

2
1 1

10 0

( )
2

L L duPP P ds dx dx
dx

 
= ∆ = − =  

 
∫ ∫  

2 22
3 2 2

1 12
1 10 02 2

L LEI d u duPU dx dx
dx dx

   
Π = − = −   

   
∫ ∫    (d) 

Using (a) in (d) and integrating we obtain, 

 
2 2

3
3

2 2
3

EI a Pa
L L

Π = − .       (e) 

Taking the derivative / 0a∂Π ∂ = of (e) we get, 

 3
23cr

EIP
L

= .        (f) 

x2

x1
P

2 1( )u x

a

L

Fig. A10: Prismatic column 
under compression.
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This value is about 22% higher than the exact one, 2
32.4674 /crP EI L= . We can do better if 

we express the energy in the beam in terms of the bending moment, 

2
1

1
30

( )
2

L M xU dx
EI

= ∫ .       (g) 

The bending moment is given by 1 2( ) ( )M x P a u= − and thus, 

22 2
2 2

1 1
3 10 0

( )
2 2

L LP a u duPU dx dx
EI dx

 −
Π = − = −  

 
∫ ∫    (h) 

Using (a) in (h) the potential energy takes the form, 

 
2 2 2

3

8 2
30 3

P a L Pa
EI L

Π = −  

From the minimization / 0a∂Π ∂ = , we obtain the critical load, 3
22.50cr

EIP
L

= . 

This value is 1.3% higher than the exact one. It is interesting to underline here the reason for a 

better estimation of the critical compressive force when the bending moment is used: When 

the deflection is used in calculating the energy, it is twice differentiated. This step ‘reduces’ 

the quality of approximation in the method because the error increases with differentiation. 

However, using the moment instead, we assume the second derivative of the deflection, given 

their relationship from beam theory, i.e. 2 2
1 2 1( ) /M x d u dx without subsequent differentiation.  

7b. Buckling of a vertical bar. A tapered bar of constant thickness is loaded under 

compression as shown in Figure A11. Determine the critical load using the stationary value of 

the potential energy. The variation of the moment of inertia is,  

 

1
3 1 0 1

1
3 1 0 1

3( ) 1 , 0
2

3( ) 4 ,
2

     

     

x LI x I x
L
x LI x I x L
L

 = + ≤ ≤ 
 
 = − ≤ ≤ 
 

     (a) 



32/35  

where 0I  is the moment of inertia at the ends of the bar. Use the principle of minimum potential 

energy and represent the deflection as, 

1
2 1 1( ) sin πxu x a

L
=     (b) 

The assumed form of the deflection satisfies the boundary 

conditions, i.e. 2 1( ) 0u x =  at 1 0x =  and 1x L= . 

The energy components are given by the expressions (d) in 

Example 7a,  

2 22
3 2 2

1 12
1 10 02 2

L LEI d u duPU dx dx
dx dx

   
Π = − = −   

   
∫ ∫ (c)  

 

 

Due to symmetry, the energies are calculated by the integrals, 

/2 44
2 2 20 01 1
1 1 14 3

0

8.21532 1 sin
2 16

L EI π EIx πxπU a dx a
L L L L

 = + = 
 ∫    (d) 

/2 2 2
2 2 21
1 1 12

0

2 cos
2 4

L πxP π π Pa dx a
L L L

= =∫     (e) 

Thus, 

  

4 2
2 20
1 13

4 2
20
13

4 2
0 0

3 2

8.215
16 4

8.215( ) 0
16 4

8.215 20.25 .
16 4 cr

π EI π PU a a
L L

π EI π Pδ δ U δa
L L

π EI EIπ P P
L L L

Π = − = −

 
Π = − = − = 

 

⇒ = ⇒ =

 

     (f) 

8. Applications to finite elements. In the finite element method, the solid is discretized by 

a finite number of elements connected at their nodes and along their inter-element boundaries 

as well.  

x2

x1

P

P

Fig. A11: Tapered bar 
under compression.

L/2

L/2
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Fig. A12: Schematic of a discretization of a plate in plane stress and (e) as an element with 

the three nodes. 

Here we must impose equilibrium nodal compatibility on the nodes and along the boundaries 

between the elements. The method relies on the minimization of the potential energy of the 

system expressed in terms of displacement functions.  A typical illustrative example is shown 

in Figure A12 where a triangular element is used. Suppose that the plate is discretized by m 

elements. Using matrices and vectors, for each one, we define  

- the nodal displacement vector,  

( ) ( )1 2 1 2 1 2, , , , ,j j k k l l

e
δ u u u u u u=        (a) 

- the displacement functions within the element, 

( ) ( )1 2 2 1 2( , ), ( , )ie
f u x x u x x=      (b) 

or,   

( ) [ ]( )
e e

f N δ=         (c) 

The elements of [ ]N are functions of position within the element.  

- the strain displacement relation, 

( ) [ ]( )e e
ε B δ=         (d) 

- the constitutive response for each element, 

( ) [ ]( )e e
σ C ε=        (e) 

The principle of minimum potential energy is expressed for the entire body as follows (see 

1x

•

•

•

2x

j k

l
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A.35),  

1 1 1
0

e e e

m m m

ij ij i i i iσ δε dv t δu ds f δu dv
Ω ∂Ω Ω

− − =∑ ∑ ∑∫ ∫ ∫ .   (f) 

Here ,e eΩ ∂Ω indicate the volume and surface of element e. Next, we use (b) in (f), 

  ( ) ( ) ( ) ( ){ } ( ) ( )
1 1

0
e e

m mT TT

e e e ee e
δε σ δf f dv δf t ds

Ω ∂Ω
− − =∑ ∑∫ ∫    (g) 

Using (c), (d) and (e), the last expression becomes, 

 ( ) [ ] ( ) ( )
1

0
m T

eee e
δδ k δ Q − =  ∑   .     (h) 

In (h), ( )
e

δδ  is the virtual nodal displacement vector of element e, [ ]ek is its stiffness matrix 

and ( ) ( ),
ee

δ Q  are vectors with the element’s nodal displacements and nodal forces, due to 

body forces and surface tractions. Since the variations ( )
e

δδ are independent and arbitrary 

for a single element, (h) results in, 

 [ ] ( ) ( )ee e
k δ Q= .       (i) 

The sum in (g) can be expressed in the following matrix form for the entire discretized body, 

 ( ) [ ]( ) ( ) 0
T

δδ K δ Q − = 
  . 

The last equation must be satisfied for arbitrary variations of all nodal displacements ( )δδ  

and thus, we obtain the system of equations for the entire solid,  

[ ]( ) ( )K δ Q=         (j) 

where,  

[ ] [ ]
1

m

e
K k=∑  and ( ) ( )

1

m

e
Q Q=∑ .     (k) 

The matrix [ ]K  and total force vector ( )Q  are identified by proper superposition of all 
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elements stiffness and nodal forces.  
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